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rp~e Keyph rases 

Lag Time Before Essentially Constant Urinary 
Excretion Rate Is Attained 

By JOHN G. WAGNER and JACK I. NORTHAM 

If a substance is continuously infused intravenously at a constant rate, the plasma 
concentration will increase until it reaches an asymptotic concentration. If the 
urinary excretion rate of the substance is directly proportional to its plasma con- 
centration, the urinary excretion rate will become essentially constant as the asympto- 
tic plasma concentration is approached. Analogously, if a metabolite is formed at 
a constant rate, due to  saturation of an enzyme system metabolizing the drug, the 
plasma concentration of the metabolite would be expected to approac hsome as- 
ymptotic concentration. If the urinary excretion rate of the metabolite is directly 
proportional to its plasma concentration, the urinary excretion rate of the metabo- 
lite would become essentially constant as the asymptotic plasma concentration is 
approached. Equations were derived to estimate the lag time between initiation 
of the maintained constant input rate to the plasma compartment and the time when, 
for all practical purposes, the asymptotic plasma concentration and the con- 
stant urinary excretion rate may be considered to have been reached for both the 
one- and two-compartment open models. The  theoretical expectation is that, 
if the cumulative excretion curve is nearly linear, then there must be an appreciable 
negative intercept when the line is  extrapolated back to zero time. It is theoret- 
ically impossible for a cumulative urinary excretion curve to be linear and the 
line extrapolate through the origin corresponding to zero excretion at zero time. 

F A SUBSTANCE is continuously infused intra- I venously at a constant rate the blood (serum 
or plasma) concentration will increase until i t  
reaches an asymptotic value (I). However, as 
the curves of Rescigno and Segre (1) and Wagner 
and Nelson (2) illustrate, it requires an appreci- 
able time to approach the asymptotic concen- 
tration. If the urinary excretion rate of the 
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substance is directly proportional to its plasma 
concentration, then the urinary excretion rate 
will become essentially constant, and the cumula- 
tive urinary excretion curve will become es- 
sentially linear, as the asymptotic plasma 
concentration is approached. 

Analogously, if a metabolite is formed at a 
constant rate, due to saturation of the enzyme 
system metabolizing the drug, the plasma 
concentration of the metabolite would be 
expected to approach some asymptotic value, 
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after a certain time. If the urinary excretion 
rate of the metabolite is directly proportional to  
its plasma Concentration, then the urinary 
excretion rate of the metabolite will become 
essentially constant, and the cumulative urinary 
excretion curve will become essentially linear, as 
the asymptotic plasma concentration of the 
metaholite is approached. In the case of a 
metabolite some finite additional time would 
also be required for absorption of the drug and 
build up of blood concentration of unchanged 
drug which would be necessary before an enzyme 
system couicl become saturated. This additional 
time would have to  be added to  the lag time 
between initiation of the constant (zero-order) 
formation rate and the time the asymptotic 
plasma concentration is approached, to  estimate 
the total time required for the cumulative 
urinary excretion curve to  become essentially 
linear. 

The  two most common pharmacokinetic 
models, which apply to the above situations, 
are the one- and two-compartment open models. 
One purpose of this report is to  show how one 
may estimate for these models the time lag 
necessary between the start of the zero-order 
input into the plasma compartment and the 
time when, for all practical purposes, the asymp- 
totic plasma concentration and the constant 
urinary excretion rate is attained. Another 
purpose is to  show how the maximum excretion 
rate may be estimated before i t  is attained if the 
rate constant for elimination is known. 
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is the fraction of substance reaching the plasma 
compartment which is ultimately excreted in the 
urine. Substitution of Eq. 1 into Eq. 2 and sim- 
plifying gives 

dA,/dt = f k o ( l  - e - K t )  (Eq. 3) 

Let t ,  be the time that the excretion rate reaches 
some proportion, p ,  of the maximum rate, fko. 
Then, 

dA,,/dt = p.f.ku (Eq. 4) 

(Eq. 5 )  

when 
e-KL - 1 - p 

0 -  

Taking logarithms of both sides of Eq. 5 we find 
t ,  ‘v 3 / K  when p = 0.95 (Eq. 6)  

t a  ‘u 4.6/K when p = 0.99 (Eq. 7) 

If one substitutes hi 2/t1l2 for K ,  where t i / ,  is the 
half-life, into Eq. 5, takes logarithms, and rear- 
ranges, one finds 

ta = -1.443 In (1 - p ) . t q 2  (Eq. 8) 

Hence, 

t , / t l / ,  = 4.322 when p = 0.95 (Eq. 9) 

and, 

t , / t l / ,  = 6.645 whenp = 0.99 (Eq. 10) 

Hence, the time, t,, for the excretion rate to reach 
the same proportion, p ,  of the maximum rate, fko ,  
and the plasma concentration to reach the same 
proportion, p ,  of the asymptotic value, ko/VK,  is 
directly proportional to the half-life of elimination 
if the one-compartment open model applies. 

Integration of Eq. 3 yields 

EXPERIMENTAL 

One-Compartment Open Model 

model is shown in Scheme I. 
Intravenous Infusion at  a Constant Rate-The 

Here ko is the con- 

e 
Scheme I 

stant (zero-order) infusion rate with dimensions 
masspime, V is the apparent volume of distribution, 
and C is the plasma concentration of the substance 
infused a t  time t ,  and K is the first-order rate 
constant for elimination by all processes. For 
this model the appropriate classical equation during 
the infusion is: 

where t is the time from the start of the infusion. 
If urinary excretion rate is directly proportional to 
plasma concentration, then 

dA,/dt = f VKC 0%. 2) 

where dA,/dt is the urinary excretion rate and f 

1 - e- -Kt  
A ,  = fko  [ t  - (r)] (Eq. 11) 

where A,, is the cumulative amount excreted in the 
urine to time t. Substitution of values forf, ko, K ,  
and various t values would yield a curve of A ,  
versus t by application of Eq. 11. If one chose two 
points, (AuTz,T2) and (AUT1,Tl ) ,  on this curve, 
joined them with a straight line, then extrapolated 
the line back to time zero corresponding to  an 
intercept ( A , ) t = ~ ,  then the slope, AA,/At, of the 
line may be shown to be 

The value of the intercept may be shown to be: 

(Eq. 13) 

The equation of such a line will be: 

The line will cross the time axis when A ,  = 0 a t  a 
point, t[A*-o), given by 

( T ,  - T I )  - ( T 2 c K T 1  - Tle-KTz)  
t ( A ~ - o )  = K ( T ,  - TI) - (e--XT1 - e-KTZ) 

0%. 15) 
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P = l /z[(Ki + K2 + K-1) - 

d ( K i  + KP + K-1)' - 4K-iKzI (Eq. 19) 
If U is the total dose infused arid T is the infusion 
time, then 

ko = D / T  0%. 20) 
I t  should be noted that 01 > 8, and Eq. 17 only 
applies when t < T .  If urinary excretion rate is 
directly proportional to the concentration CI,  then: 

dAu/dt = f ViK2Ci (Eq. 21) 

Substitution of Eq. 17 into Eq. 21 and simplifying 
yields 

Hence, if an estimate of K is available, one may 
estimate the maximum excretion rate, fko, even from 
a markedly curved segment of the cumulative 
excretion plot.' 

Metabolite Formation at a Constant Rate-If a 
metabolite is formed at a constant rate, then 
Scheme I may apply but the symbols have to  be 
redefined. In this case ka would be the constant 
formation rate, V would be the volume of dis- 
tribution, C the plasma concentration of the 
metabolite a t  time t, and K would be the first-order 
rate constant for elimination of the metabolite by 
all processes. If the metabolite was completely 
excreted in the urine (z.e.,  f = l), then K would be 
the first-order rate constant for urinary excretion 
of the metabolite. The same equations as above 
would apply. 

Two-Compartment Open Model 

Intravenous Infusion a t  a Constant Rate-The 
model is shown in Scheme 11. 

+ + - -  
Scheme IT 

Here ko is the constant (zero-order) infusion rate 
with dimension mass/time; K2 is the first-order 
rate constant for elimination of the substance 
infused by all processes; V1 is the volume of the 
inner (plasma) compartment; and.Cl is the con- 
centration of the substance infused in this compart- 
ment a t  time t; V2 is the volume of the outer com- 
partment, and C2 is the concentration of the sub- 
stance infused in this compartment a t  time t; 
K1 is a first-order rate constant representing the 
instantaneous fraction of substance in the inner 
compartment being transferred to  the outer com- 
partment; and K-I = (Vl/V2)K1 = VKl ,  where 

The solutions of the appropriate differential 
equations for this model were given by Gaudino 
(3). Rewritten in the nomenclature of Wagner and 
Northam (4)  the equation for the concentration, CI, 
is : 

v = VJV2. 

where 

a = '/2[(K1 + K2 f K - I )  + 
.\/(K1 + KZ + K-1)' - 4K-lKzI (Eq. 18) 

1 One may also estimate fko with only one point on the 
curve by use of Eq. 11. 

(KE)e-8t] . u - P  (Eq. 22) 

If t, is the time required for the excretion rate to 
reach some proportion, p, of the maximum rate, 
f k o ,  then 

dA,/dt = p.j.ka (Eq. 23) 
when 

- (1 - p )  (gZ - i) = 0 (Eq. 25) 

For given V1/V2 and K I / K z  ratios, a/& and @/K2 
remain constant, so that for a given p ,  the value of 
Kzt,  is unique. Based on Eqs. 18, 19, and 25 
a digital computer program was written which 
allowed print-out of ta and tn/tliz, where tqz = 
In 2/K2, for given values of VI /  V2, KJK2, Kz, and p .  
For p = 0.95 and 0.99, KJK2 = 0.1, 0.25, 0.5, 
1, 2, 5, 10, and 100 and V1/V2 = 0.125, 0.25, 0.5, 
1, 2, 4, and 8, values of t./tl/, were estimated. 
Hence 112 values of t , / t l / ,  were calculated and these 
values served as the basis for Figs. 1 and 2. 

Integration of Eq. 22 yields 

One may plot a curve of A ,  versus t by substituting 
appropriate values into Eq. 26. If one chose two 
points, (A,Tz,T2) and (AuT1,T1), on this curve, 
joined them with a straight line, then extrapolated 
the line back to zero corresponding to  the intercept, 
(.4u)f=o, then the slope, AA./At, of the linemay be 
shown to be 

AA,/At = f k s  
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The value of the intercept may be shown to be 
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The equation of the line is as given by Eq. 14 
except the slope and intercept are defined by Eqs. 
27 and 28. The line will cross the time axis at a 
point, t(Au=o),  given by 

t(AU,) = 

the one-compartment open model. The lag times 
listed were calculated with Eqs. 9 and 10. 

Figures 1 and 2 are plots of the ratio t,/tl,z 
versus K I / K 2  on log-log scales for the two-compart- 
ment open model. Here ti/, is the half-life of 
elimination estimated from Kz ( i . e . ,  t i / ,  = In 2/Kz). 
Figure 1 gives values of ta / t i , ,  when p = 0.95, and 
Fig. 2 gives value of t./ti,, when p = 0.99. The 
values of to were estimated with an appropriate 
digital cotnputer program based on Eqs. 18, 19, and 
25. 

Figure 3 has two examples illustrating use of 
Eqs. 11 through 16. Letting fko be 1 unit/hr. and 
K be 1.0 br.-l, values of A ,  corresponding to t = 
0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, and 4.6 br. were calcu- 
lated using Eq. 11; these correspond to the circled 
points in Fig. 3. Letting TI = 1.5 hr. and TZ = 
3.0 hr., a straight line was drawn joining the (AUT2, 

c (e -PTi  - e-BTz) 

Utilizing Eqs. 27 through 29 one can show that 

It should be noted that as TI and TZ become large 
then 

and 

Metabolite Formation at a Constant Rate-If a 
metabolite is formed a t  a constant rate, then 
Scheme I1 may apply but the symbols have to  be 
redefined. In the metabolite case, ko would be the 
constant formation rate and KZ would be the 
first-order rate constant for elimination of metabo- 
lite by all processes. If the metabolite was com- 
pletely excreted in the urine ( i . e . ,  f = l ) ,  then KZ 
would be the first-order rate constant for urinary 
excretion of the metabolite, Vl would be the volume 
of the inner compartment, Cl the concentration of 
metabolite in this compartment at time t; VZ would 
be the volume of the outer compartment, and CZ 
the concentration of metabolite in this compartment 
at time t .  K1, K-l, and f would have the same 
significance except the reference to metabolite 
rather than unchanged drug. Then Eqs. 17 through 
30 would apply. 

RESULTS 

Table I gives values of the lag time, to,  corre- 
sponding to different half-lives and rate constants for 

Tz) and (AuT1,T1) points and the line extrapoiated 
back to zero time; the equation of this line is A ,  = 
0.8845t - 0.6037 corresponding to  Eq. 14. Hence 
this line intersects the ordinate a t  (A&-,, = 
-0.6037 and it crosses the time axis a t  the point 
t(A,_J = 0.6825 hr. The slope, AAu/At ,  estimated 
from these points, is 0.8845 indicating the excretion 
rate has reached only 88.45% of its maximum value. 
Using Eq. 16, however, the true maximum excretion 
rate of unity may be estimated. Letting TI = 3.0 
hr. and T, = 4.6 hr., another straight line was 
drawn joining the points corresponding to  these 
times, and the line was extrapolated back to the 
ordinate; the equation of this line is A ,  = 0.97521 

1 v I V  I ' A 2  
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Fig. 2-Plot of the ratio t./ti/, versus the ratio &/K2 

on a log-log scale for  the two-compartment open model 
when p = 0.99. 

- 0.8758 corresponding to  Eq. 14. Hence this 
second line intersects the ordinate a t  (AU)tP0 = 
-0.8758 and it crosses the time axis a t  the point 
t (AU4)  = 0.8981 hr. The slope, AA,/At ,  estimated 
from these points, is 0.9752 indicating that the 
excretion rate has reached 97.5% of its maximum 
value. Using Eq. 16 the time maximum excretion 
rate of unity may be estimated. 

Figure 4 has two examples illustrating use of 
Eqs. 26 through 30. Letting f k ~  = 1 unit/hr., 
K 2  = 1 hr.-l, KI = 5 hr.-l, and V1/V2 = 2, use of 
Eqs. 18, 19, and 26 allowed calculation of the plotted 
points in the figure corresponding to the same times 
as in the one-compartment case. A straight 
line was drawn joining the points corresponding to 
1.5 and 3.0 hr. and the line was extrapolated-back 
to time zero; this line has the equation A ,  = 
0.7606 t - 0.5965. This line intersects the ordinate 
a t  = -0.5965 and it crosses the time axis at 
the point t(A,,) = 1.153 hr. The slope, AA,/At, 
estimated from these points, is 0.7606 indicating 
that the excretion rate has reached 76.06% of its 
maximum value. Using Eq. 30, however, the true 
maximum excretion rate of unity was estimated. 
A second straight line was drawn joining the points 
corresponding to 3.0 and 4.6 hr. and the line was 
extrapolated back to time zero; this line has the 
equation A, = 0.91241 - 1.0518. This second line 
intersects the ordinate a t  ( A,)td = - 1.0518 and it 

TABLE I-VALUES OF THE LAG TIME, t,, 
CORRESPONDING TO DIFFERENT HALF-LIVES, 

AND RATE CONSTANTS FOR THE 
ONE-COMPARTMENT OPEN MODEL 

Rate  ___._ 
Half-Life, Constant ( K ) ,  I /a, hr. --- 
0.231 3 . 0  1 . 0  1 . 5  
0.3465 2 . 0  1 . 5  2 . 3  

hr. hr.-l p = 0.95" E O.%Jb 

0.693 1 .0  3 . 0  4 .6  
1.386 0 . 5  6 .0  9 . 2  
2.77 0.25 12.0 18.4 
4.63 0.15 20.0 31.0 
6.93 0.10 30.0 46.0 

13.86 0.05 60.0 YZ.0 
69.3 0.01 300.0 460.0 

Values in this column calculated with Eq. 9. Values in 
this  column calculated with Eq. 10. 

3 4 5 

Fig. 3-Plot of the cumulative amount excreted in the 
urine (A,,) against time (t) in hours for the one-com- 
partment open modrl where K = 1 hr.-1 and fko = 
1 unitlhr. Theiinejoining the 1.5- and 3.0-hr. point 
has the equation A, = 0.8845t - 0.6037; f o r  this line 
(AU)tPO = -0.6037, t(Au-,,) = 0.6825 hr. and AAu/ 
A t  = 0.8845. The line_joining the 3.0- and 4.6-hr. 
points has the equation A, = 0.9752t - 0.8758; for 
this line (A,)t4 = -0.8758, t(A,-B) = 0.8981 hr. and 

AAu/APt = 0.9752. 

I 2 t  

I I I I 

0 I 2 3 4 5 
t 

Fig. 4-Plot of the cumulative amount excreted in the 
urine (A,) against time ( t )  in hours f o r  the two- 
compartment open model where K1 = 5 hr.-', Ka = 
1 hr.-I, VI/V~ = 2,  and fko = 1 unit/hr. The line 
jpining the 1.5- and 3.0-hr. points has the equation 
A, = 0.7606t - 0.5965; for this line (A,)ta = 
-0.5965, t(Au-o) = 0.7842 hr. and AA,/At = 0.7606. 
The line j:ining the 3.0- and 4.6-hr. points has the 
equation A, = 0.9124t - 1.0518; for this line 
(A.)t,o = -1.0518, t(A,-O) = 1.153 hr., and AAu/ 

At = 0.9124. 
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crosscs thc time axis a t  the point t(Au30) = 1.153 hr. 
Thc slope of 0.9124 indicates the excretion rate has 
rcached 91.24y0 of its maximum value. Using 
Eq. 30 the true maximum excretion rate of unity 
may be estimated. 

DISCUSSION 

Cummings and Martin (5 ,6)  advanced theoretical 
considerations suggesting that the first-order rate 
constant for urinary excretion of a metabolite will 
not exceed 3 hr.-I and that i t  will probably not 
exceed 1 hr.-l, even if the metabolite exhibits the 
maximum renal clearance. In light of this a 
maximum value of K = 3 hr. was used in Table I, 
and a value of K = 1 hr.-l was used in constructing 
Fig. 3 for the one-compartment open model. 
Analogously, a value of K P  = 1 hr.-‘ was used in 
constructing Fig. 4 pertaining to the two-compart- 
rnent open model. 

Although an observed cumulative urinary ex- 
cretion curve may appear linear before the theoret- 
ically required lag time for a given half-life of 
elimination, i t  would be wise to use the equations 
and figures in this report as a guide to the expecta- 
tion of linearity of such curves. Cumulative 
urinary excretion curves are extremely insensitive 
indicators (2,  7-9). The excretion rate time plot, 
corresponding to the cumulative plot, should always 
be drawn also (7, 9). One would be unwise to 
infer constant formation rate of a metabolite, for 
example, unless the excretion rate time plot in- 
dicated an essentially maximum sustained rate 
which commenced after some lag time estimated by 
Eqs.  8 or 24. 

Analogously, if all the drug administered in a 
dosage form is suspected of being absorbed at a 
constant rate, then the same consideration would 
apply as discussed here for constant-rate intravenous 
infusion. In  such a case one would not expect the 
plasma concentration to plateau, nor the urinary 
excretion rate to become nearly constant, until the 
drug had been released and absorbed at  a constant 
rate for a period of time which may be estimated by 
means of Eqs. 8 or 24. Since gastrointestinal 
transit time past the absorbiug surface area is 
limited, and since this period of time is near or less 
than the lag time, t,, for most drugs predicted by the 
equations in this report, it would be a rare event 
for constant-rate absorption to lead to a constant 
blood level or a constant urinary excretion rate 
after a single dose of drug in such a dosage form. 
For example, assume the one-compartment open 
model applies to the drug. If the half-life of 
elimination is 2.77 hr., corresponding to a rate 
constant of 0.25 lir.-I, it would require about 12 
hr. to reach 95% of the asymptotic plasma con- 
centration and about 28 hr. to reach 99% of the 
asymptotic plasma concentration if the drug 
entered the blood a t  a constant rate. Gastro- 
intestinal transit times at the absorbing surface area 
are usually of this order of magnitude or less. 

If a metabolite is formed at a constant rate, due to  
saturation of an enzyme system metabolizing the 
drug, the above considerations indicate that it is 
theoretically impossible for the plot giving the 
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cumulativc urinary excretion of the metabolite as a 
function of time to be linear and the line extrapolate 
through the origin corresponding to zero excretion 
a t  zero time. 

It should be noted that t e / t i 1 2  for the two-compart- 
ment open model is always greater than the corre- 
sponding value for the one-compartment open model 
for a given p value and when 0.125 5 VI /VZ  5 8 
and 0.1 5 KJK2 5 100. Also, for given values of p 
and K I / K 2 ,  t a / t i 1 2  increases as VI/V, decreases for 
the two-compartment open model. The examples 
shown in Figs. 3 and 4 are illustrative of the situa- 
tion with very polar metabolites and drugs with 
short half-lives since a rate constant of 1 hr.-I, 
corresponding to a half-life of 0.693 hr., was used in 
their construction. If the half-life of elimination 
is greater, the time scale on comparable plots would 
become greater. For example, Table I indicates 
that if the half-life of elimination is 6.93 hr. and the 
one-compartment model applies, then it would 
require 30 hr. to reach 95% of the maximum excre- 
tion rate if there was zero-order input to the blood; 
it would require greater than 30 hr. if thc two- 
compartment open model applied. 

CONCLUSIONS 

The theoretical expectation is that if the cumula- 
tive urinary excretion curve is essentially linear, 
due to zero-order rate of formation of a metabolite 
or constant-rate intravenous infusion, then there 
must be an appreciable negative intercept when 
the linear portion is extrapolated back to zero 
time.l I t  is theoretically impossible for a cumula- 
tive urinary excretion curve to be linear and the line 
extrapolate through the origin corresponding to 
zero excretion a t  zero time. 

2Proof of this for both the one- and two-compartment 
open models has been provided. Intuitively, one would 
expect the conclusions to hold for any compartment model. 
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